abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
    dnes 20:22 | Zajímavý software

    Navigace se soukromím CoMaps postavena nad OpenStreetMap je nově k dispozici v Google Play, App Store i F-Droid. Jedná se o komunitní fork aplikace Organic Maps.

    Ladislav Hagara | Komentářů: 1
    včera 19:33 | Nová verze

    Vývojáři OpenMW (Wikipedie) oznámili vydání verze 0.49.0 této svobodné implementace enginu pro hru The Elder Scrolls III: Morrowind. Přehled novinek i s náhledy obrazovek v oznámení o vydání.

    Ladislav Hagara | Komentářů: 1
    včera 15:22 | IT novinky

    Masivní výpadek elektrického proudu zasáhl velkou část České republiky. Hasiči vyjížděli k většímu počtu lidí uvězněných ve výtazích. Výpadek se týkal zejména severozápadu republiky, dotkl se také Prahy, Středočeského nebo Královéhradeckého kraje. Ochromen byl provoz pražské MHD, linky metra se už podařilo obnovit. Výpadek proudu postihl osm rozvoden přenosové soustavy, pět z nich je nyní opět v provozu. Příčina problémů je však stále neznámá. Po 16. hodině zasedne Ústřední krizový štáb.

    Ladislav Hagara | Komentářů: 40
    včera 02:33 | Nová verze

    Po více než roce vývoje od vydání verze 5.40 byla vydána nová stabilní verze 5.42 programovacího jazyka Perl (Wikipedie). Do vývoje se zapojilo 64 vývojářů. Změněno bylo přibližně 280 tisíc řádků v 1 500 souborech. Přehled novinek a změn v podrobném seznamu.

    Ladislav Hagara | Komentářů: 7
    včera 01:33 | Nová verze

    Byla vydána nová stabilní verze 7.5 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 138. Přehled novinek i s náhledy v příspěvku na blogu.

    Ladislav Hagara | Komentářů: 0
    3.7. 16:33 | Zajímavý software

    Sniffnet je multiplatformní aplikace pro sledování internetového provozu. Ke stažení pro Windows, macOS i Linux. Jedná se o open source software. Zdrojové kódy v programovacím jazyce Rust jsou k dispozici na GitHubu. Vývoj je finančně podporován NLnet Foundation.

    Ladislav Hagara | Komentářů: 0
    3.7. 12:33 | Nová verze

    Byl vydán Debian Installer Trixie RC 2, tj. druhá RC verze instalátoru Debianu 13 s kódovým názvem Trixie.

    Ladislav Hagara | Komentářů: 0
    3.7. 03:33 | Komunita

    Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za červen (YouTube).

    Ladislav Hagara | Komentářů: 0
    3.7. 02:33 | Nová verze

    Libreboot (Wikipedie) – svobodný firmware nahrazující proprietární BIOSy, distribuce Corebootu s pravidly pro proprietární bloby – byl vydán ve verzi 25.06 "Luminous Lemon". Přidána byla podpora desek Acer Q45T-AM a Dell Precision T1700 SFF a MT. Současně byl ve verzi 25.06 "Onerous Olive" vydán také Canoeboot, tj. fork Librebootu s ještě přísnějšími pravidly.

    Ladislav Hagara | Komentářů: 0
    3.7. 01:33 | Komunita

    Licence GNU GPLv3 o víkendu oslavila 18 let. Oficiálně vyšla 29. června 2007. Při té příležitosti Richard E. Fontana a Bradley M. Kuhn restartovali, oživili a znovu spustili projekt Copyleft-Next s cílem prodiskutovat a navrhnout novou licenci.

    Ladislav Hagara | Komentářů: 0
    Jaký je váš oblíbený skriptovací jazyk?
     (59%)
     (27%)
     (7%)
     (2%)
     (1%)
     (1%)
     (3%)
    Celkem 355 hlasů
     Komentářů: 16, poslední 8.6. 21:05
    Rozcestník

    Dotaz: fast fourier v Lua

    25.4.2022 10:33 martin
    fast fourier v Lua
    Přečteno: 632×
    Ahoj, Potřebuji využít v jedné aplikaci FFT.
    Něco jsem našel na Rosetta code.
    FFT funguje ale inverzní FFT vrací něco jiného.
    help needed :(
    díky
    complex = {__mt={} }
    
    function complex.new(r, i)
      local new={real=r, imaginary=i or 0}
      setmetatable(new,complex.__mt)
      return new
    end
    
    function complex.__mt.__add(c1, c2)
      return complex.new(c1.real + c2.real, c1.imaginary + c2.imaginary)
    end
    
    function complex.__mt.__sub(c1, c2)
      return complex.new(c1.real - c2.real, c1.imaginary - c2.imaginary)
    end
    
    function complex.__mt.__mul(c1, c2)
      return complex.new(c1.real * c2.real - c1.imaginary * c2.imaginary,
    					 c1.real * c2.imaginary + c1.imaginary * c2.real)
    end
    
    function complex.expi(i)
      return complex.new(math.cos(i),math.sin(i))
    end
    
    function complex.__mt.__tostring(c)
      return "("..c.real..","..c.imaginary..")"
    end
    
    
    --[[---------------------------------------------------------------------
    Cooley–Tukey Fast Fourier Transformation                                -
    Zdroj: https://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm         -
    ]]-----------------------------------------------------------------------
    
    function FFT(vect)
      local n=#vect
      if n<=1 then return vect end
    
      local odd,even={},{}
      for i=1,n,2 do
        odd[#odd+1]=vect[i]
        even[#even+1]=vect[i+1]
      end
    
      FFT(even)
      FFT(odd)
    
      for k=1,n/2 do
        local t=even[k] * complex.expi(-2*math.pi*(k-1)/n)
        vect[k] = odd[k] + t
        vect[k+n/2] = odd[k] - t
      end
      return vect
    end
    
    --[[-----------------------------------------------------------------------
    Inverse Fast Fourier Transformation                                       -
    ]]-------------------------------------------------------------------------
    
    function IFFT(amplitudes)
    
    	local N = #amplitudes
    	local input = 1 / N
    
    	local i=nil
    	for i=1, N do
    		amplitudes[i].imaginary = -amplitudes[i].imaginary
    	end
    
    	FFT(amplitudes)
    
    	for i=1, N do
    		amplitudes[i].imaginary = -amplitudes[i].imaginary
    		amplitudes[i].real = amplitudes[i].real * input
    		amplitudes[i].imaginary = amplitudes[i].imaginary * input
    	end
    
    	return amplitudes
    end
    
    function toComplex(vector)
      vect={}
      for r,i in ipairs(vector) do
        vect[r]=complex.new(i)
      end
      return vect
    end
    
    -- test
    data = toComplex{1, 1, 1, 1, 0, 0, 0, 0}
    
    print("orig:", unpack(data))
    print("fft :", unpack(FFT(data)))
    print("ifft:", unpack(IFFT(data)))
    

    Řešení dotazu:


    Odpovědi

    Gréta avatar 25.4.2022 19:48 Gréta | skóre: 37 | blog: Grétin blogísek | 🇮🇱==❤️ , 🇵🇸==💩 , 🇪🇺==☭
    Rozbalit Rozbalit vše Re: fast fourier v Lua

    neumim dělat lulu :D :D :D :D ale ten tvuj lulu zdrojáček mi vrací

    orig:   (1,0)   (1,0)   (1,0)   (1,0)   (0,0)   (0,0)   (0,0)   (0,0)
    fft :   (4,0)   (1,-2.4142135623731)    (0,0)   (1,-0.41421356237309)   (0,0)   (1,0.41421356237309)    (0,0)   (1,2.4142135623731)
    ifft:   (1,-0)  (1,-5.5511151231258e-17)        (1,2.4894981252574e-17) (1,-5.5511151231258e-17)        (5.5511151231258e-17,0) (5.5511151231258e-17,5.5511151231258e-17) (0,-2.4894981252574e-17) (5.5511151231258e-17,5.5511151231258e-17)
    

    noa to é na mínus sedmnáctou (jako nakalkulačce hele :O ;D) sou tak děsně mrňavý čísla že je asi jako mužem považovat za nuly takže to máš asi jako dobře :D ;D

    Gréta avatar 25.4.2022 19:49 Gréta | skóre: 37 | blog: Grétin blogísek | 🇮🇱==❤️ , 🇵🇸==💩 , 🇪🇺==☭
    Rozbalit Rozbalit vše Re: fast fourier v Lua

    joa ty mrňavý čisilka se při výpočtech berou z nepřesnosti s děláním s floatama/číslama s plovoucí desetinou tečkou hele :O ;D

    25.4.2022 22:33 z_sk | skóre: 34 | blog: analyzy
    Rozbalit Rozbalit vše Re: fast fourier v Lua
    Čísla ináč zapísané. Viď: Vědecký zápis čísel.
    debian.plus@protonmail.com
    26.4.2022 02:56 .
    Rozbalit Rozbalit vše Re: fast fourier v Lua
    On nemluví o zápisu, ale o hodnotě, hňupe.
    Řešení 1× (Gréta)
    26.4.2022 05:44 martin
    Rozbalit Rozbalit vše Re: fast fourier v Lua
    Ahoj, nějak se mi tu potratil muj další příspěvek
    Nebo jsem dal jen náhled a pak ho neodeslal :/
    co jsem psal hned po tom.
    Bylo to ve spěchu takže jsem si nevšiml že číslo končí
    s e-017. Ve své slepotě jsem viděl jen -5,587543235696549
    To je celé.
    Díky za reakce.

    Založit nové vláknoNahoru

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.