Organizace Open Container Initiative (OCI) (Wikipedie), projekt nadace Linux Foundation, vydala Runtime Specification 1.3 (pdf), tj. novou verzi specifikace kontejnerového běhového prostředí. Hlavní novinkou je podpora FreeBSD.
Nový open source router Turris Omnia NG je v prodeji. Aktuálně na Allegro, Alternetivo, Discomp, i4wifi a WiFiShop.
Na YouTube a nově také na VHSky byly zveřejněny sestříhané videozáznamy přednášek z letošního OpenAltu.
Jednou za rok otevírá společnost SUSE dveře svých kanceláří široké veřejnosti. Letos je pro vás otevře 26. listopadu v 16 hodin v pražském Karlíně. Vítáni jsou všichni, kdo se chtějí dozvědět více o práci vývojářů, prostředí ve kterém pracují a o místní firemní kultuře. Můžete se těšit na krátké prezentace, které vám přiblíží, na čem inženýři v Praze pracují, jak spolupracují se zákazníky, partnery i studenty, proč mají rádi open source a co
… více »Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za říjen (YouTube).
Jeff Quast otestoval současné emulátory terminálu. Zaměřil se na podporu Unicode a výkon. Vítězným emulátorem terminálu je Ghostty.
Amazon bude poskytovat cloudové služby OpenAI. Cloudová divize Amazon Web Services (AWS) uzavřela s OpenAI víceletou smlouvu za 38 miliard USD (803,1 miliardy Kč), která poskytne majiteli chatovacího robota s umělou inteligencí (AI) ChatGPT přístup ke stovkám tisíc grafických procesů Nvidia. Ty bude moci využívat k trénování a provozování svých modelů AI. Firmy to oznámily v dnešní tiskové zprávě. Společnost OpenAI také nedávno
… více »Konference Prague PostgreSQL Developer Day 2026 (P2D2) se koná 27. a 28. ledna 2026. Konference je zaměřena na témata zajímavá pro uživatele a vývojáře. Příjem přednášek a workshopů je otevřen do 14. listopadu. Vítáme témata související s PostgreSQL či s databázemi obecně, a mohou být v češtině či angličtině.
Byl vydán Devuan 6 Excalibur. Přehled novinek v poznámkách k vydání. Kódové jméno Excalibur bylo vybráno podle planetky 9499 Excalibur. Devuan (Wikipedie) je fork Debianu bez systemd. Devuan 6 Excalibur vychází z Debianu 13 Trixie. Devuan 7 ponese kódové jméno Freia.
Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu poprvé překročil 3 %, aktuálně 3,05 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 27,18 %. Procesor AMD používá 67,10 % hráčů na Linuxu.
Pro naše ukázkové účely bude stačit úplně jednoduchá architektura procesoru, kterou vidíte na následujícím obrázku. Sběrnice jsou označeny plnou čarou, řídící signály jsou tečkované.

Vlastní procesor je ohraničen čárkovanou čarou. Jeho jediný výstup je adresa pro paměť, ze které čte instrukce. Tato adresa je uložena v registru PC (Program Counter). Nejdůležitějším registrem je Akumulátor (ACC), do kterého se zapisují výsledky operací ALU, a do kterého také můžeme zapsat přímou hodnotu pomocí instrukce. Z akumulátoru také můžeme zapisovat hodnoty do registrů v registrovém poli R. Jeden vstup ALU je vždy akumulátor, druhý je jeden z registrů.
Control nastavuje řídící signály pro ostatní prvky procesoru. Abychom mohli tento prvek navrhnout, musíme znát formát instrukce. Pro příklad zvolme velmi jednoduchý formát, kde instrukce bude mít 16 bitů, přičemž horních 8 bitů bude případný přímý operand a spodních 8 bitů budou zakódované řídící signály:
| DIRECT OPERAND | RSRVD | reg | alu | op | |15 |14 |13 |12 |11 |10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Op určuje operaci. Zvolme 4 možné operace:
00 bude zápis do PC (změna adresy pro čtení z paměti, takže instrukce skoku).01 pro provedení operace ALU.10 pro zápis přímého operandu do akumulátoru.11 pro zápis z akumulátoru do registru.Alu označuje dva bity, které určují, jaká operace ALU se má provést. Dva bity reg vybírají registr, se kterým se má provést daná operace. Další dva bity jsou prozatím nevyužité. Následuje osmibitový přímý operand.
Podívejme se tedy konečně na VHDL kód, který popisuje tento procesor. Protože entity ALU a pole registrů jsme již navrhli v předchozích dílech, vložíme je do naší entity jako tzv. komponenty. Tento přístup nám umožňuje hierarchicky skládat obvod z dílčích entit. Komponentu nejdříve musíme nadeklarovat v deklarační části architektury a v těle architektury potom provést napojení této komponenty na naše signály.
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
ENTITY main IS
PORT (
CLK : in std_logic;
RESET : in std_logic;
INST : in std_logic_vector(15 downto 0);
ADDR : out std_logic_vector(7 downto 0)
);
END main;
ARCHITECTURE behavioral OF main IS
component ALU IS PORT (
I1, I2: IN std_logic_vector(7 downto 0);
A: in std_logic_vector(1 downto 0);
O: out std_logic_vector(7 downto 0));
END component;
component register_set IS PORT (
CLK, RESET: in std_logic;
I: in std_logic_vector(7 downto 0);
O: out std_logic_vector(7 downto 0);
ADDR: in std_logic_vector(1 downto 0);
WR: in std_logic);
END component;
signal acc, alu_acc, reg_alu: std_logic_vector(7 downto 0);
signal pc: std_logic_vector(7 downto 0);
signal op_pc, op_alu, op_reg, op_acc: std_logic;
BEGIN
p_pc: process (RESET, CLK)
begin
if (RESET = '1') then
pc <= (others => '0');
elsif (CLK'event and CLK = '1') then
if op_pc = '1' then
pc <= INST(15 downto 8);
else
pc <= pc + '1';
end if;
end if;
end process;
p_acc: process (RESET, CLK)
begin
if (RESET = '1') then
acc <= (others => '0');
elsif (CLK'event and CLK = '1') then
if op_acc = '1' then
acc <= INST(15 downto 8);
elsif op_alu = '1' then
acc <= alu_acc;
end if;
end if;
end process;
op_pc <= '1' when INST(1 downto 0) = "00" else '0';
op_alu <= '1' when INST(1 downto 0) = "01" else '0';
op_acc <= '1' when INST(1 downto 0) = "10" else '0';
op_reg <= '1' when INST(1 downto 0) = "11" else '0';
reg1: register_set port map (CLK => clk, RESET => reset, I => acc, O => reg_alu,
ADDR => INST(5 downto 4), WR => op_reg);
alu1: alu port map (I1 => acc, I2 => reg_alu, A => INST(3 downto 2), O => alu_acc);
ADDR <= pc;
END behavioral;
Vstupy naší entity jsou hodinový vstup, reset a data z paměti (instrukce). Jediným výstupem je adresa paměti.
Po deklaraci komponent a signálů následuje vlastní kód, který tvoří obvod. V něm jsou dva procesy reagující na hodinový signál, které tvoří dva registry našeho obvodu - PC a ACC. Co a zda do těchto registrů zapisovat, se řídí signály op_..., které jsou tvořeny pomocí instrukce when z dvou bitů instrukce určujících operaci procesoru. Následuje již pouze propojení komponent s registry a s ALU. K jejich řízení využíváme jednotlivé bity instrukce (např. operace ALU je dána bity 2 a 3). Spojení mezi těmito komponentami navzájem a spojení s dalšími prvky procesoru zajištují interní signály (např. z ALU do akumulátoru je to signál alu_acc).
Jako příklad funkce jsem zvolil jednoduchý program, který uloží do akumulátoru hodnotu 1, tuto hodnotu zapíše do registru R1 (přímý zápis do tohoto registru není možný), uloží do akumulátoru hodnotu 3, inkrementuje tuto hodnotu a poté provede skok opět na tuto instrukci inkrementace. Simulace běhu tohoto programu je zde:
Vícebitové hodnoty jsou zobrazeny v hexadecimálním formátu. Pokud chcete vidět přesnou funkci tohoto programu, je třeba převést hodnoty instrukce do binárního formátu a porovnat s formátem instrukce.
V signálu Addr je zřejmé, že Program Counter na adrese 04 narazil na instrukci skoku na adresu 03, čímž se vytvořila nekonečná smyčka. V registru Acc (akumulátor) můžeme vidět inkrementující se hodnotu. První operace je zápis do akumulátoru (aktivní signál op_acc), poté zápis akumulátoru do registru (signál op_reg) a znovu zápis do akumulátoru. Potom již jen inkrementujeme akumulátor v nekonečné smyčce.
Procesor, který byl zvolen pro ilustraci, má řadu nedostatků, např. neumožňuje podmíněné skoky, formát instrukce plýtvá pamětí atd. Řešení těchto nedostatků však může posloužit jako cvičení zvídavému čtenáři.
Tímto náš úvod do VHDL končí. Cílem bylo ukázat, že hardware je možné popsat pomocí jazyka. Pokud ve vás alespoň trošku vzbudil zájem o problematiku návrhu obvodů, potom splnil svůj účel. Všem děkuji za pozornost!
Nástroje: Tisk bez diskuse
Tiskni
Sdílej:
, na východě se používá oboje, v Evropě zase spíše VHDL... takže tak jednoznačné to není. Jinak Verilog má možná open source simulátor, nicméně samotný je propietární a zatížen licencováním, zatímco VHDL je otevřený standard. Existují pro něj jak open source simulátory, tak také komplet simulátor -- syntezátor -- router. Verilog je sice jednodušší, o to je zas ale VHDL komplexnější. Na návrh procesorů, případně architektur se také nemusí použít ani jedno, ale můžeš vycházet třeba z IDL či ADL.
Jinak není to jedno kdo co používá? Není trolovatění se proč každý nepoužívá ten můj nejoblíbenější super tuper jazyk dětinské?