Svobodná historická realtimová strategie 0 A.D. (Wikipedie) byla vydána ve verzi 28 (0.28.0). Její kódový název je Boiorix. Představení novinek v poznámkách k vydání. Ke stažení také na Flathubu a Snapcraftu.
Multimediální server a user space API PipeWire (Wikipedie) poskytující PulseAudio, JACK, ALSA a GStreamer rozhraní byl vydán ve verzi 1.6.0 (Bluesky). Přehled novinek na GitLabu.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04-1.2 a 20.04 OTA-12.
Byla vydána (Mastodon, 𝕏) nová stabilní verze 2.0 otevřeného operačního systému pro chytré hodinky AsteroidOS (Wikipedie). Přehled novinek v oznámení o vydání a na YouTube.
WoWee je open-source klient pro MMORPG hru World of Warcraft, kompatibilní se základní verzí a rozšířeními The Burning Crusade a Wrath of the Lich King. Klient je napsaný v C++ a využívá vlastní OpenGL renderer, pro provoz vyžaduje modely, grafiku, hudbu, zvuky a další assety z originální kopie hry od Blizzardu. Zdrojový kód je na GitHubu, dostupný pod licencí MIT.
Byl představen ICT Supply Chain Security Toolbox, společný nezávazný rámec EU pro posuzování a snižování kybernetických bezpečnostních rizik v ICT dodavatelských řetězcích. Toolbox identifikuje možné rizikové scénáře ovlivňující ICT dodavatelské řetězce a na jejich podkladě nabízí koordinovaná doporučení k hodnocení a mitigaci rizik. Doporučení se dotýkají mj. podpory multi-vendor strategií a snižování závislostí na vysoce
… více »Nizozemský ministr obrany Gijs Tuinman prohlásil, že je možné stíhací letouny F-35 'jailbreaknout stejně jako iPhony', tedy upravit jejich software bez souhlasu USA nebo spolupráce s výrobcem Lockheed Martin. Tento výrok zazněl v rozhovoru na BNR Nieuwsradio, kde Tuinman naznačil, že evropské země by mohly potřebovat větší nezávislost na americké technologii. Jak by bylo jailbreak možné technicky provést pan ministr nijak nespecifikoval, nicméně je známé, že izraelské letectvo ve svých modifikovaných stíhačkách F-35 používá vlastní software.
Nové číslo časopisu Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 162 (pdf).
Sdružení CZ.NIC, správce české národní domény, zveřejnilo Domain Report za rok 2025 s klíčovými daty o vývoji domény .CZ. Na konci roku 2025 bylo v registru české národní domény celkem 1 515 860 s koncovkou .CZ. Průměrně bylo měsíčně zaregistrováno 16 222 domén, přičemž nejvíce registrací proběhlo v lednu (18 722) a nejméně pak v červnu (14 559). Podíl domén zabezpečených pomocí technologie DNSSEC se po několika letech stagnace výrazně
… více »Google představil telefon Pixel 10a. S funkci Satelitní SOS, která vás spojí se záchrannými složkami i v místech bez signálu Wi-Fi nebo mobilní sítě. Cena telefonu je od 13 290 Kč.
Po delší odmlce vás vítám u již pátého pokračování seriálu o pythonské knihovně. Dnes se již nebudeme zabývat funkcemi z modulu __builtins__, ale vrhneme se na práci s řetězci. Předpokládám, že většina čtenářů ví, jak se s řetězci pracuje, ale neodpustím si jednoduché opakování.
V Pythonu je možné pracovat se dvěma typy řetězcových objektů. Prvním typem je obyčejný řetězec, který je 8bitový, a jeho interpretace záleží na nastaveném kódování. Druhým jsou Unicode řetězce. Standardně se skládají z 16bitových znaků, které jsou zakódovány ve formátu UCS-2. Od verze 2.2 je možné používat i 32bitové Unicode řetězce kódované v UCS-4; toto nastavení se však povoluje při překladu interpretru. Mezi oběma typy řetězců je možné provádět konverze. Je možné rovněž konvertovat řetězce z/do jiného kódování než je systémové.
Nejdříve se začneme zabývat metodami řetězců. Stejné funkce je možné nalézt i v modulu string, ty jsou však už delší dobu označeny jako deprecated (čili nedoporučované).
Poznámka: Mezi vydáním předchozího a tohoto dílu došlo k uvolnění nové verze Pythonu (v. 2.5). V tomto článku i dalších pokračováních bude na tuto skutečnost brán zřetel a rozdíly mezi jednotlivými verzemi budou komentovány.
Metoda vrací novou kopii řetězce, přičemž první písmeno bude velké. Metoda je pro 8bitové řetězce závislá na nastavení locale.
>>> print "adam".capitalize() Adam >>> print "říman".capitalize() říman >>> print u"říman".capitalize() Říman >>>
Tato metoda vrací také nový řetězec o délce width. Obsah volajícího řetězce je umístěn do jeho středu (vycentrován). Přebývající místo je doplněno znaky fillchar nebo, je-li tento parametr vynechán, mezerami.
>>> retezec = "Kobyla má malý bok" >>> print retezec.center(len(retezec) + 4, '!') !!Kobyla má malý bok!! >>> print retezec.center(len(retezec) + 3, '!') !!Kobyla má malý bok! >>> print retezec.center(len(retezec) - 3, '!') Kobyla má malý bok >>>
Jak je vidět, metoda si poradí i v případě, že vrácený řetězec bude mít lichou délku. V tomto případě se pokusí vycentrovat znaky, jak jen to jde. Předáme-li jako první parametr číslo menší než je délka volajícího řetězce, vrátí se tento řetězec nezměněn.
Tato metoda byla změněna ve verzi 2.4. Byl přidán argument fillchar.
Spočítá počet výskytů podřetězce sub v řetězci, resp. jeho části definované parametry start a stop.
Metoda dekóduje řetězec do Unicode řetězce. Parametr encoding představuje kodek použitý při dekódování. Je-li vynechán, použije se výchozí kódování (ASCII). Druhý parametr nastavuje způsob, s jakým se bude program vyrovnávat s chybami, které mohou při převádění nastat.
Parametry ignore a replace jsou použitelné pouze pro chyby vznikající při převodu. Je-li chyba způsobená neodpovídajícím vstupem, je vyhozena výjimka UnicodeError bezpodmínečně. Například kódování iso-8859-2 a cp1250 nejsou 100% přenositelná. A nechcete-li, aby byla při objevení nekompatibilního znaku vždy vyvolávána výjimka, můžete použít dva výše zmíněné parametry. V prvním případě bude znak ignorován, ve druhém nahrazen.
Použijete-li však řetězec s diakritikou a nastavíte jej jako ASCII, bude vždy vyvolána výjimka. Při převodu z ASCII kódování se totiž kontroluje, zda je hodnota znaku menší než 128 (rozsah základní ASCII je 0 - 127).
Metoda byla přidána do Pythonu ve verzi 2.2 a ve verzi 2.3 byl přidán parametr errors.
>>> unicode = "kobyla má malý bok".decode("utf-8") # utf-8 => unicode
>>> unicode
u'kobyla m\xe1 mal\xfd bok'
# odpovidajici unicode retezec
>>> print unicode
kobyla má malý bok
# zde je videt, ze byl retezec zkonvertovan spravne
>>> iso = "kobyla má malý bok".decode("iso8859-2")
# iso-8859-2 => unicode
>>> iso
u'kobyla m\u0102\u0104 mal\u0102\u02dd bok'
>>> # za kazdy cesky znak se ulozi 2 unicode znaky,
... # protoze me nastaveni locale je utf8 (neASCII
... # znaky jsou vice bytove), ale pri prevodu bylo
... # zadano kodovani iso8859-2 (1 bytove)
...
>>> print iso
kobyla mĂĄ malĂ˝ bok
>>> "kobyla má malý bok".decode()
# neodpovidajici vstup, viz odstavec vyse
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 8:
ordinal not in range(128)
>>>
Metoda encode pracuje opačně než decode. Unicode nebo obyčejný řetězec je zkonvertován do kódování encoding. Pokud budeme konvertovat standardní řetězec, nesmíme zapomenout, že řetězec bude interpretován ve standardním kódování (ASCII). Pro parametr erorrs platí to samé jako u decode, ale přibývají ještě parametry 'xmlcharrefreplace' a 'backslashreplace'. První zakóduje "neobvyklé" znaky (diakritika atd.) pro použití v XML nebo HTML (&#číslo;), druhý použije lomítkovou interpretaci (\\xe1, kde e1 je hexadecimální kód znaku á).
Všechna použitelná kódování je možné nalézt v sekci 4.8.3 Python Library Reference.
Metoda je součástí jazyka od verze 2.0. Parametry xmlcharrefreplace a backslashreplace byly přidány ve verzi 2.3.
>>> retezec = u"kobyla má malý bok"
>>> retezec.encode("utf-8") # unicode => utf-8
'kobyla m\xc3\xa1 mal\xc3\xbd bok'
>>> retezec.encode("iso-8859-2") # unicode => iso-8859-2
'kobyla m\xe1 mal\xfd bok'
>>> retezec.encode("ascii") # ta sama chyba jako u decode
Traceback (most recent call last):
File "", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1'
in position 8: ordinal not in range(128)
>>> retezec.encode("ascii", "ignore")
# na rozdil od decode v tomto pripade funguje 'ignore'
'kobyla m mal bok'
>>> retezec.encode("ascii", "replace") # i 'replace'
'kobyla m? mal? bok'
>>> retezec.encode("ascii", "xmlcharrefreplace")
# rozkodovani pro pouziti na webu
'kobyla má malý bok'
>>> retezec.encode("ascii", "backslashreplace")
# a s lomitkovou interpretaci
'kobyla m\\xe1 mal\\xfd bok'
>>> "kobyla ma maly bok".encode() # ASCII => ASCII
'kobyla ma maly bok'
>>> "kobyla ma maly bok".encode("utf-8") # ASCII => utf-8
'kobyla ma maly bok'
>>> print "kobyla ma maly bok".encode("utf-8")
kobyla ma maly bok
>>>
Vrací True, pokud řetězec nebo jeho část [start:end] končí na suffix. Ve verzi 2.5 byla přidána možnost zadat suffix jako n-tici řetězců, které se budou kontrolovat.
Vrací novou kopii řetězce, ve kterém jsou všechny tabulátory nahrazeny mezerami. Počet těchto mezer je udán parametrem tabsize. Je-li tento vynechán, je počet mezer standardně nastaven na 8.
A zde dnešní díl končí. Příště budeme pokračovat dalšími metodami.
Nástroje: Tisk bez diskuse
Tiskni
Sdílej:
>>> i = "5" >>> i.isdigit() True >>>
$a =~ /^[+-]?\d+(?:\.\d+)?/ a nebo mnohem lépe a radostnějiuse Scalar::Util qw(looks_like_number);
...
if (looks_like_number($a)) {
...
} else {
...
}
...
$a =~ /^[+-]?\d+(?:\.\d+)?/
No fuj...
print "$a je cislo" if ($a eq ($a + 0))
Akorát je neošetřeno explicitní uvedení znaménka + .
Akorát je neošetřeno explicitní uvedení znaménka + .Ano, taková nepodstatná maličkost, když můžeme použít interní funkci perl api
looks_like_number na nímž je Scalar::Util::looks_like_number pouze wrapper. Místo toho necháme perl zavolat tuto funkci hned dvakrát, pokusíme se o sčítání a nakonec ještě budeme porovnávat řetězce s tím výsledkem, že to nefunguje pro všechny případy (hloupé + na začátku). Aneb jak to dělat jednoduše, když to jde složitě, že?
>>> a=["1","2","3","a","b"] >>> ", ".join(a) '1, 2, 3, a, b' >>>